NONLINEAR FILTRATION THROUGH A POROUS WEDGE
IN THE PRESENCE OF A PHASE TRANSITION

V. I. Voronin and V. V. Samokhvalov ' UDC 532.546.536 .24

An approximate solution is given for the temperature distribution in a porous body bearing a
flow of cooling agent which undergoes a phase transition.

We consider the passage of an incompressible liquid of constant specific heat through an isosceles
porous wedge. The pressure and temperature at the faces AC and AB (BC) of the wedge (Fig.1a) are con-
stant and are correspondingly Pj.s Ty and Poyes Tout (Pin > Poyts Tin < Toyt)s within the region of motion
of the liquid, there is boiling, giving rise to a gas, the thermodynamic state of which defined by

Pa=p,RT,. 1

If the steady-state motion of the liquid within the porous medium is accompanied by a phase transi-
tion, the entire region consists of two zones separated by a transition layer; one zone AaCDA is filled
solely with liquid, and the other ABCaA with vapor. The thickness of the transition layer may be taken as
zero, because it is extremely small compared with the dimensions of the porous body. The temperature
of the coolant changes stepwise on passage through the boiling surface; the superheating of the liquid is
substantially dependent on the nature of the liguid and the roughness of the heating surface [1]. A porous
medium is very rough and there is a fairly extensive class of liquids for which this temperature discon-
tinuity is small, e.g., water, and so we neglect the superheating of the liquid on the boiling isotherm,

We adopt the following assumptions for the infiltration region:

1) the coolant temperature and the temperature of the porous medium are the same at each point
[2-4];

2) the viscosities of the liquid and gas are dependent only on temperature;

3) the motion of the liquid and vapor in the porous body is subject to a power resistance law with the
same power n > 0:

— (Zj
V;‘ Vj= — m grad Pj- (2)

The entire wedge ABCDA receives an incompressible liquid of the same nature as that in zone
AaCDA, and in exactly the same way there moves a gas of the same nature as that in zone ABCaA, i.e.,
we actually consider the motion of a hypothetical liquid (gas) through a porous wedge, the thermophysical
characteristics of which are monotonic and continuous functions of temperature and pressure, with no
phase transition, Then in the region of motion we have, by virtue of our three assumptions a temperature
distribution defined by the solution to

C;P;

AT —
}”i-eff

V,grad T, =0, 3)

that satisfies the following boundary conditions: for a liquidatface AC, Ty = Tip; py =pin and Ty = Tyouts
P1 = P1out at faces AB and BC; for the gas at face AC, T, =Tyin; Py = Pajn and Ty = Toyt; P2 = Pout» at faces
AB and BC. Here the constants Tyy,¢, Piout> Tzins Pain 2re unknowns to be determined.
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Fig.1, Filtration region in: a) x~y coordinates: nT
= 0; T = constant < 0; 3) phase~transition line; b) 7
— B coordinates,

We use curvilinear orthogonal coordinates P, ¥, and ¢ as shown in [5], which enables us to put
(3) in the form

3} oT,; d 1 oT; C; T
(%j ; \) + (__ ' : ) + ) ' - :0’ (4)
Gpj 0p] 6‘{’1 K, ov. hieff_ apl

7 J

+
where % :V?ﬂi(T)/Oli; Yy :R““ng;‘ 1Ilz(T)/OlnglJri; vy = Vi; vy = PaVy Cy = ¢1py; Cy = cp; while ‘I’j is
the current function that satisfies
oY, oY,

j
v, = . El

ix dy Ujy=— ox - ’ )

If the resistance law is linear (n = 0), it follows from (4) that the temperature is a single-valued
function of the pressure, and so the partial differential equation (4) can be reduced to an ordinary differ~
ential equation, which is readily integrated subject to the above boundary conditions. If the infiltration
is nonlinear (n = 0), itis rather more difficult to solve Eq.(4), but for the assumed range of infiltration
rates we may put vpj ® 1/Vj = const; in this case we may assume as before that

T,=T,(n) ©)

and Eq. (4) becomes
L L G 7
D—T; dp; Aj effgzj

Here gj =N Vj/VJp, Dy is a constant of integration.
We use (6) to put for the liquid and gas respectively that

P1

pPout
_ j dp 1 pytidp,
! w@M R M

in Pz

: =0 on the

As Pj is determined apart from an arbitrary constant, we may choose the latter such that PJ

faces AB and BC.
We introduce the dimensionless quantities

Pj=P;/Ps; W= 050d; 0;=0,j0,0; x=x/d; y=y/d.

Here
Plkout ) fout +1g
/1
Pin= 5 “p—l; Py = rEN} 5. 5_2*.1 P 3
P p‘l (T) R . T2 ”2 (T)
m 21n
Vjo is the filtration rate at point D; the constants Pj in- Vjo are to be determined. From Eq.(7) we have
aT,;
= M;(D;—T)) )
i

(M = Pyincy¥1%1P1/Meff; My = PyinCpVy®y/Agepp).
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We introduce new independent variables v and B related to the coordinates % and ; by

~ cos p = sinf g
dx;= -~ o dP;, — — d¥;
*;Yi U; (10)
- sinp ,- = cosp
dyjz — P dP] -+ = le'j,
Vi Yj

where
X]': v}‘o'*'ld/ajpjm.

We get the following system of equations in the coordinates \7 and B after use of (2) and (5):

oY, 1 oP; 0¥, n+l 9P <11)
B T o o

which are transformed by replacement of the variables as follows:

1 - -
T = el Inv; Q;(v, B) =P, exp(—er) (12)

and elimination of %J. to get for Q;(7, B) a Helmholtz equation
AQ,~*Q,=0. (13)

Here ¢2 = n/2Vn + 1.

In the variables T and B, the infiltration region is an infinite strip of width 28, with a slot along the
positive semiaxis of 7 (Fig.1b). Because of this slot Qj(T, B) is a function of more than one sheet in this
region, and it is therefore desirable to restrict consideration only to the upper part of the belt for B, = 8
=0, within which QJ-(T , B) consists of one sheet, This corresponds to consideration of infiltration within
the half-wedge ABD.

At internal points in region ABD, we have finite values for Qj(7, B); although there are singularities
at points A and B, Qj(7, B) is absolutely integral with respect to 7 in the range from —w« to +e, as can be
demonstrated from physical consideration of the singularities at points A and B. Then we can apply to
Qj(’r, B) a Fourier transformation with respect to T within the infiltration region,

The following is a solution to the Helmholtz equation via an integral Fourier transform:

L]

b “shqg(Bo—B) = o (14)
Qi B)= - j~————shq ‘. Q; (A, 0)exp (irvy) dh,
where
Qi 0) = fQ,- (t, 0) exp (—ikt,) d;. (15)

Equation (15) contains the unknown function Q}-(T , 0), which is deduced via the condition that the line 8 =0
is a straight line,

Consider the line T = constant within the plane of the half-wedge (Fig.la); the family of such lines is
bounded by the curve T =0, and the symmetry condition can be used only for T =0, We find for 7 < 0 that
y; and y3 move successively from point b to point b' for 7 = constant and then for B = constant move along
the boundary of the wedge from b' to A. We use (10)-(12) to determine y; and yy; summation of these
qguantities gives us an integral Fourier— Fredholm equation determininng(T , 0) for T<0:

©

gethghy ( n+2 .\ 5 . oy, n2
.y : (A, 0)expidtdh=: L eXp e T,. 16
j 1+ (2Vn—5—1 ' )Ql( ) exp ik, v p2]/n~§—1 ! (16)

v

—w

Note that Q;(7, 0) =exp (—£7;) for T =0 it is physically clear that Qj(T, 0) is monotonic also for T
— — «, where it tends to zero (Qj (0, 0y = 1) together with a certain exponential exp m7; we put approxi-
mately for 7 <0
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Q; (v, 0) =~ expms;, {17)

where the factor m has to be determined.
Now from (16) we obtain via the theory of residues an equation for determining the coefficient XJ-:
Vit (-t 7§ (1) ( 1 1 (18)
— 1 e Ct »
“ N m-- L_?*) ght Bo 2 [M__l} K.\ m+K, - 8+Kn)
o2V +1 k=0 Bs "
We use the theorem of residues with (14) and (17) to get the distribution of Q in coordinates 7 and

0

B:
(h+1)sin -ETDT g
RS
Q(r, B) = sin g, Bo—B) exp mr; +——— (m+e) E rhen P exp K, 7, (1<0). (20)
' sin g,qBo K, oK) Ko mAs

Here K,= 1/ _(k—{—ﬁ_l)znz‘; I = Vm® )
0

We use the condition 37= 0 for B =0, T=-— with (10), (11), and (20) to get a formula for m:

®©

. °tg‘_’£“§° ﬁ (m +8) (k1) g —0. (21)
‘——r”—— O e R A e masan
— i fd K, (K,—m)e+K,) (Kn WHX)

The solutions to (13) for infiltration of liquid alone or of gas alone are the same, so
Qi (t, By =Qy(v, B) and %3 = %o =X

As Qj(T, B) is determined unambiguously, it follows from (8), (10), (12), (19), and (20) that the isobars
in the infiltration region remain unchanged for any constant values of the data in this problem. Moreover,
the isobars for infiltration of liquid alone coincide with the isobars for the case of gas motion provided
that n is the same in both instances.

(22)

Now we can select pyoyut, Tigyts Pains Tain such that the solutions for the liquid in the zone AaCA
and for the vapor in the zone ABCeA coincide along the line AaC and satisfy the condmons for the problem,
The basis for this is the circumstance that in both the above cases the values of PJ are the same, and
also that the lines PJ = const coincide approximately with the isotherms; further, on any of these lines and
at each point, the gas and liquid flows and the heat flux are mutually proportional,

It is sufficient to restrict oneself to proportionality of the heat flux and coolant flow at the points of
intersection of the lines P = const and DB in order to solve the problem.

The following conchtxons should be met at the point where the boiling isotherm meets the DB axis:

oT. oT. 2
) T*=F(p*); 2) T{' =T5; 3) pi' = 5’3 4) Uy = 0005 5) Moot 6; —Meft 0; = Loy 6) xt =xp. (B
Consider condition (6) in Eq.(23); we get from Eq. (10) for the Dx axis that
~ .1 n+21 )
dx;=—"— exp { ——-c—=— T;} [dQ; (r, 0)—eQ; (v, 0)d1;] .
— p( T )[40 (5 00—y (5, 0) )
This means that to meet condition (6) in Eq. (23) we have
TF =T =* (24)
Then condition (4) in Eq. (23) gives
V20 =P1010- (25)
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From (22) we have
0y Pin ot = 0, Py
Condition (5) of (23) is then put as follows:
¢y (Dy—T#) p D — ¢ (Dy—~T*)=L.
Condition (1) of (23) is the equation for the P — T phase diagram for the liguid.

From Eqs.(7) and (9) we get expressions for Ty, Tiguts Pains Pioyt:

Vi, 0/vaen
Tyin= Dy — (Dy—T*%) (—gl;—___—gif-\) e
| Dy—Toy ,)m'mcp p’;.
D,—Tyn ,
o P ro 1y (T) .
Piom =pir; + M, j‘ D—T dr;

Tin

T1out \=D1"" (Dx_“Tin) (

Tout
(D Py (1 T2 1a(T)
p;jgzpm_ M in 2 dT.
2
Toin

The constants Dj are deduced from the boundary conditions for each zone:

T*

M

L (pr—pw = || 2O ar;
in

Prin D,—T
M T
— M rante_ (pErFR Uy dT.
(n + 2) p2 in [pout (p ) ] S‘ . DZ—T

[}
T

Then (19) and (20), together with (8) and (25)-(33), define the temperature and pressure distribu-

(29)

(30)

(31)

(32)

(33)

tions in T — 8 coordinates when an incompressible liquid infiltrates a porous wedge and boils there, The

conversion to x — y coordinates is performed numerically using Eq.(10).

NOTATION

v is the velocity of filtration;
are its projections on the coordinate axes;

p is the pressure;

T is the temperature;

a is the power-law filtration coefficient;
P is the density;

R is the gas constant;

¢y is the heat capacity of the liquid;

Ccp is the capacity of the vapor at constant pressure;

Aotf is the mean thermal conductivity of the liquid and the porous medium;
L is the latent heat of vaporization;

A is the Fourier parameter;

d is the characteristic dimension;

q = VA? + €

Subscripts

* denotes parameters on the boiling isotherm;

J
1 denotes parameter characterizing the liquid;
2 denotes parameters of the gas (vapor).

is the angle of inclination of the filtration velocity vector to the axis Dx;
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